Neuromechanical adaptation induced by jumping on an elastic surface.

نویسندگان

  • Gonzalo Márquez
  • Xavier Aguado
  • Luis M Alegre
  • Miguel Férnandez-Del-Olmo
چکیده

Jumping on an elastic surface produces a number of sensory and motor adjustments. This effect caused by jumping on the trampoline has been called "trampoline aftereffect". The objective of the present study was to investigate the neuromuscular response related with this effect. A group of 15 subjects took part in an experimental session, where simultaneous biomechanical and electromyographic (EMG) recordings were performed during the execution of maximal countermovement jumps (CMJs) before and after jumping on an elastic surface. We assessed motor performance (leg stiffness, jump height, peak force, vertical motion of center of mass and stored and returned energy) and EMG activation patterns of the leg muscles. The results showed a significant increase (p ≤ 0.05) of the RMS EMG of knee extensors during the eccentric phase of the jump performed immediately after the exposure phase to the elastic surface (CMJ(1)), and a significant increase (p ≤ 0.05) in the levels of co-activation of the muscles crossing the ankle joint during the concentric phase of the same jump. Results related with motor performance of CMJ(1) showed a significant increase in the leg stiffness (p ≤ 0.01) due to a lower vertical motion of center of mass (CoM) (p ≤ 0.005), a significant decrease in jump height (p ≤ 0.01), and a significantly smaller stored and returned energy (p ≤ 0.01). The changes found during the execution of CMJ(1) may result from a mismatch between sensory feedback and the efferent copy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Dopamine Receptor Agents on Swim Stress-Induced Inhibition of Naloxone-Induced Jumping Behavior in Morphine-Dependent Mice

In the present study, interactions of dopamine receptor agonists and antagonists with water swimming stress (WSS) on naloxone-induced jumping in morphine-dependent mice were examined. Mice were rendered dependent as described in the methods section. The opioid receptor antagonist, naloxone (1 mg/kg), was injected to elicit jumping (as a withdrawal sign). The first group exposed to WSS in the pr...

متن کامل

The Effects of Dopamine Receptor Agents on Swim Stress-Induced Inhibition of Naloxone-Induced Jumping Behavior in Morphine-Dependent Mice

In the present study, interactions of dopamine receptor agonists and antagonists with water swimming stress (WSS) on naloxone-induced jumping in morphine-dependent mice were examined. Mice were rendered dependent as described in the methods section. The opioid receptor antagonist, naloxone (1 mg/kg), was injected to elicit jumping (as a withdrawal sign). The first group exposed to WSS in the pr...

متن کامل

Evaluation of nitric oxide involvement in effect of lead on dependency to morphine in mice

In the present study, interactions between lead exposure with nitric oxide precursor (L-arginine) or nitric oxide synthase (NOS) inhibitor (L-NAME) on naloxone-induced jumping and diarrhea in morphine-dependent mice were examined. Chronic lead acetate (0.05%) exposure altered naloxone-induced jumping and diarrhea in mice. Jumping was decreased after 7 days and was unchanged 14 and 28 days after...

متن کامل

Neuromechanical adaptation to hopping with an elastic ankle-foot orthosis.

When humans hop or run on different surfaces, they adjust their effective leg stiffness to offset changes in surface stiffness. As a result, the overall stiffness of the leg-surface series combination remains independent of surface stiffness. The purpose of this study was to determine whether humans make a similar adjustment when springs are placed in parallel with the leg via a lower limb orth...

متن کامل

Neuromechanical Analysis of Locust Jumping

The nervous systems of animals evolved to exert dynamic control of behavior in response to the needs of the animal and changing signals from the environment. To understand the mechanisms of dynamic control, we need a means of predicting how individual neural and body elements will interact to produce the performance of the entire system. We have developed a neuromechanical application named Ani...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology

دوره 23 1  شماره 

صفحات  -

تاریخ انتشار 2013